Completely Integrable Torus Actions on Complex Manifolds with Fixed Points
نویسندگان
چکیده
We show that if a holomorphic n-dimensional compact torus action on a compact connected complex manifold of complex dimension n has a fixed point then the manifold is equivariantly biholomorphic to a smooth toric variety.
منابع مشابه
Toric Integrable Metrics on Tori Are Flat
By studying completely integrable torus actions on contact manifolds we prove a conjecture of Toth and Zelditch that toric integrable geodesic flows on tori must have flat metrics.
متن کاملToric Integrable Geodesic Flows
By studying completely integrable torus actions on contact manifolds we prove a conjecture of Toth and Zelditch that toric integrable geodesic flows on tori must have flat metrics.
متن کاملA Convexity Theorem for Torus Actions on Contact Manifolds
We show that the image cone of a moment map for an action of a torus on a contact compact connected manifold is a convex polyhedral cone and that the moment map has connected fibers provided the dimension of the torus is bigger than 2 and that no orbit is tangent to the contact distribution. This may be considered as a version of the Atiyah Guillemin Sternberg convexity theorem for torus action...
متن کاملGeodesic flows and contact toric manifolds
Forward These notes are based on five 1.5 hour lectures on torus actions on contact mani-folds delivered at the summer school on Symplectic Geometry of Integrable Hamil-tonian Systems at Centre de Recerca Matemàtica in Barcelona in July 2001. Naturally the notes contain more material that could have been delivered in 7.5 hours. I am grateful to Carlos Curràs-Bosch and Eva Miranda, the organizer...
متن کاملToric Symplectic Singular Spaces I: Isolated Singularities
We generalize a theorem of Delzant classifying compact connected symplectic manifolds with completely integrable torus actions to certain singular symplectic spaces. The assumption on singularities is that if they are not finite quotient then they are isolated.
متن کامل